วันอังคารที่ 25 ตุลาคม พ.ศ. 2554

ความรู้เกี่ยวกับตัว i

ความรู้เกี่ยวกับตัว i
จำนวนเชิงซ้อน ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน i ซึ่งทำให้สมการ i2 + 1 = 0 เป็นจริง และหลังจากนั้นเพิ่มสมาชิกตัวอื่นๆ เข้าไปจนกระทั่งเซตที่ได้ใหม่มีสมบัติปิดภายใต้การบวกและการคูณ จำนวนเชิงซ้อน z ทุกตัวสามารถเขียนอยู่ในรูป x + iy โดยที่ x และ y เป็นจำนวนจริง โดยเราเรียก x และ y ว่าส่วนจริงและส่วนจินตภาพของ z ตามลำดับ
เซตของจำนวนเชิงซ้อนทุกตัวมักถูกแทนด้วยสัญลักษณ์ \mathbb{C} จากนิยามข้างต้นเราได้ว่าเซตของจำนวนจริงเป็นสับเซตของเซตของจำนวนเชิงซ้อน ดังนั้นจำนวนจริงทุกตัวเป็นจำนวนเชิงซ้อน เราสามารถบวก ลบ คูณ และหารสมาชิกสองตัวใดๆ ของเซตของจำนวนเชิงซ้อนได้ (เว้นแต่ในกรณีที่ตัวหารคือศูนย์) และผลลัพธ์ที่ได้จำเป็นจำนวนเชิงซ้อนเสมอ ดังนั้นในทางคณิตศาสตร์เราจึงกล่าวว่าเซตของจำนวนเชิงซ้อนเป็นฟีลด์ นอกจากนี้เซตของจำนวนเชิงซ้อนยังมีสมบัติปิดทางพีชคณิต (algebraically closed) กล่าวคือ พหุนามที่มีสัมประสิทธิ์เป็นจำนวนเชิงซ้อนจะมีราก (พหุนาม)เป็นจำนวนเชิงซ้อนด้วย สมบัตินี้เป็นที่รู้จักในชื่อทฤษฎีบทมูลฐานของพีชคณิต
นอกจากนี้ ในทางคณิตศาสตร์แล้วคำว่า "เชิงซ้อน" ถูกใช้เป็นคำคุณศัพท์ที่มีความหมายว่าฟีลด์ของตัวเลขที่เราสนใจคือฟีลด์ของจำนวนเชิงซ้อน ยกตัวอย่างเช่น การวิเคราะห์เชิงซ้อน, พหุนามเชิงซ้อน, แมทริกซ์เชิงซ้อน, และพีชคณิตลีเชิงซ้อน เป็นต้น

ไม่มีความคิดเห็น:

แสดงความคิดเห็น